

The BTeV experiment is designed to challenge
the Standard Model explanation of CP
violation, mixing and rare decays of beauty
and charm quark states. The BTeV
Collaboration is a group of about 170
physicists. The experiment will utilize the
Tevatron proton-antiproton collider at the
Fermi National Accelerator Lab.

Contact Information

 Jim Kowalkowski
 Joel Butler

 Paul Sheldon
 Ted Bapty
 Sandeep Neema

 Daniel Mosse

 Ravikant Iyer
 Michael Haney
 Zbigniew Kalbarczyk

 Jae Oh

For more information on the ongoing
research and collaborating groups please visit
the following web-sites:

General information about RTES:

http://www-rtev.fnal.gov/public/hep/rtes/

General information about BTeV:

http://www-btev.fnal.gov/public/gen/index.shtml

Information about the Vanderbilt research group:

http://www.isis.vanderbilt.edu/btev

http://www.isis.vanderbilt.edu/view.asp?GID
=120&CAT=3

/rtes

Information about ARMOR technology:

http://www.crhc.uiuc.edu/DEPEND/rtes.htm

Talks from last RTES workshop:

http://false2002.vanderbilt.edu/program.php/

RTES
Real-Time, Embedded Systems group

Illinois Vanderbilt Pittsburgh Fermilab
Vanderbilt Syracuse

Super Computing 2003

Phoenix, AZ

November 15th-21st 2003

Physicists, Computer Scientists, and
Electrical Engineers with expertise in high
performance, real time, embedded system
software and hardware, reliability, and fault
tolerance, system specification, generation,
and modeling tools, doing research on fault
management in large computing clusters with
real time needs.

Funded by NSF grant ACI-0121658

Modeling and Generation tools for
Fault Adaptive, Real Time, Large Scale,

Embedded Systems

Models define:

• System Hardware

• Application Structure

• Fault Behavior

• Reconfiguration

Automatic Synthesis of:

• Real-Time Schedules

• Kernel Configuration

• Communication Maps

• System Managers

• Reconfiguration Reflex and Healing Actions

Simulation Framework

• Behavioral models of Hardware-software Components

• System simulation automatically composed by model-synthesis tools

Run-Time Environment:

• Fault Adaptive Real -Time Kernel

• Hardware-supported Fault Recovery

• Redundant Communication

• Interface to MIC Synthesizer

GatewayGateway

PC - Windows OS
DATA

Physics
Application

Physics
Application

Very Light
Monitor Agent

Very Light
Monitor Agent

VU Dataflow
Kernel

VU Dataflow
Kernel

Mitigation
FSM

Reflex
Action

DSP BIOS

TCP/IP

PC - Linux OS

EPICS Graphical
Display System

EPICSGraphical
Display System

TCP/IP

COMMANDS

ARMOR Microkernel

Recovery
Policy

Msg
Parser

Local Manager ARMOR

DSP
Interface

DaemonDaemon

ARMOR Microkernel

Recovery
Policy

Msg
Parser

Local Manager ARMOR

EPICS
Interface

DaemonDaemon

ARMOR-based Hierarchical
Error Management
What are ARMORs?

ØMultithreaded processes composed of replaceable building
blocks (elements)

Ø Provide error detection and recovery
services to user
applications

ØHierarchy of
ARMORs forms
self-checking
runtime
environment

Ø System
management,
error detection,
and recovery
services distributed
across ARMOR
processes.

Progress
Indicator
element

HB
element

Checksum
Element

ARMOR Microkernel

ARMOR

ARMOR Microkernel

ARMOR

Repository of Elements

Range- check
element

Assertion
check
element

Data
dependency
checking
element

Data
dependency
checking
element

Checksum
Element

HB
element

Checkpoint
element

Progress
Indicator
element

HB
element

Checkpoint
element

Progress
Indicator
element

Checkpoint
element

Computational Model
Ø Elements invoked through operations executing

within a tread.
Ø Element can: read/write variables and element

state, or generate new operations
Ø Element-based detection and recovery:
Ø - Monitor generates operation on an error.
Ø - Policy elements generate sequence of

operations to effect recovery.
ØResponse to errors can be reconfigured by

changing policy elements

Ø Error Management delegated to
ARMOR processes:

Ø Reconfigurable monitoring functionality, detection policy,
recovery policy.

ØCommunicate with Linux farm through common
ARMOR infrastructure.

ARMOR-Based Fault
Management in RTES

Current
Testbed

Implementation

Daemon

Remote
Mgr.

Linux Node A

App

DSP Board

Daemon

Remote
Mgr.

Linux Node B

AppLocal
ARMOR

Daemon
ARMOR Microkernel

Recovery
Policy

Information
Process

Local Manager ARMOR

HostDSP/App
Interface

Daemon

Win32 Node

A
R

M
O

R

In
te

rf
ac

e

Host

Win32 PC

ARMOR-based Hierarchical
Error Management

 What are ARMORs?

Ø Multithreaded processes composed of replaceable building
 blocks (elements)
Ø Provide error detection and recovery
 services to user
 applications

Ø Hierarchy of
 ARMORs forms
 self -checking
 runtime
 environment

Ø System
 management,
 error detection,
 and recovery
 services distributed
 across ARMOR
 processes.

Progress
Indicator
element

HB
element

Checksum
Element

ARMOR Microkernel

ARMOR

ARMOR Microkernel

ARMOR

Repository of Elements

Range-check
element

Assertion
check
element

Data
dependency
checking
element

Data
dependency
checking
element

Checksum
Element

HB
element

Checkpoint
element

Progress
Indicator
element

HB
element

Checkpoint
element

Progress
Indicator
element

Checkpoint
element

 Computational Model

Ø Elements invoked through operations executing
 within a tread.
Ø Element can: read/write variables and element
 state, or generate new operations
Ø Element-based detection and recovery:
Ø - Monitor generates operation on an error.

Ø - Policy elements generate sequence of
 operations to effect recovery.
Ø Response to errors can be reconfigured by
 changing policy elements

Ø Error Management delegated to
 ARMOR processes:
Ø Reconfigurable monitoring functionality, detection policy,
 recovery policy.
Ø Communicate with Linux farm through common
 ARMOR infrastructure.

ARMOR-Based Fault
Management in RTES

GatewayGateway

PC - Windows OS
DATA

DSP - BIOS

Physic
Application

Physic
Application

Very Light
Monitor
Agent

Very Light
Monitor
Agent

TCP/IP

PC - Linux OS

EPICS Graphical
Display System

EPICS Graphical
Display System

TCP/IP

COMMANDS

ARMOR Microkernel

Recovery
Policy

Msg
Parser

Local Manager ARMOR

DSP
Interface

DaemonDaemon

ARMOR Microkernel

Recovery
Policy

Msg
Parser

Local Manager ARMOR

EPICS
Interface

DaemonDaemon

 Current
Testbed

Implementati
on

Daemon

Remote
Mgr.

Linux Node A

App

DSP Board

Daemon

Remote
Mgr.

Linux Node B

AppLocal
ARMOR

Daemon
ARMOR Microkernel

Recovery
Policy

Information
Process

Local Manager ARMOR

HostDSP/App
Interface

Daemon

Win32 Node

A
R

M
O

R

In
te

rf
ac

e

Host

Win32 PC

FT Runtime

Modeling Environment

Simulation/FT Analysis

Synthesis

ARMOR-Based Fault
Management in RTES

 Current
Testbed

Implementation

Very Lightweight Agents (VLA)

• Monitor hardware integrity
• Monitor software integrity
• Intelligent and Adaptive (e.g., error prediction,

correction)
• Reactive, Proactive, Cooperative
• Small Footprint
• Hierarchical

Yes

No

Yes

No

Monitor Workload Of physics
Application (PA)

Work Time
Limit Exceeded

Start Grace Period and Send
Notification Upstream

Grace Period expires

1) Clean up and restart the
Physics Application if authorized.

2) Send notification to FarmletManager
VLA (FM VLA) and necessary
processes upstream.

